Estimation and forecasting of ecological efficiency of virtual machines
نویسندگان
چکیده
The massive development of the cloud marketplace is leading to an increase in the number of the Data Centers (DCs) globally and eventually to an increase of the CO2 related footprint. The calculation of the impact of Virtual Machines (VMs) on the environment is a challenging task, not only due to the technical difficulties but also due to the lack of information from the energy providers. The ecological efficiency of a system captures the relationship between the performance of the system with its environmental footprint. In this paper we present a methodology for the estimation and prediction of the ecological efficiency of VMs in private cloud infrastructures. We specifically focus on the information management starting from the energy resources in a region, the energy consumption and the performance of the resources and finally the calculation of ecological efficiency of a VM. To this end, we have designed and implemented a framework through which the ecological efficiency of a running VM can be assessed and the ecological efficiency of a VM to be deployed can be forecasted. The presented framework is being evaluated through several private cloud scenarios with VM deployments in hosts located in Germany. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
A Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملComparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملA Near Optimal Approach in Choosing The Appropriate Physical Machines for Live Virtual Machines Migration in Cloud Computing
Migration of Virtual Machine (VM) is a critical challenge in cloud computing. The process to move VMs or applications from one Physical Machine (PM) to another is known as VM migration. In VM migration several issues should be considered. One of the major issues in VM migration problem is selecting an appropriate PM as a destination for a migrating VM. To face this issue, several approaches are...
متن کاملInvestigation of Virtual Water and Ecological Footprints of Water in Wheat Fields of Isfahan Province
Despite the recent droughts in Isfahan province, climatic changes and the rising trend of population growth, as well as development of industrial and agricultural activities, are exposed to the water crisis. Thus, in order to tackle this problem, the essential strategies should including exploring virtual water and water foot print for strategic crops in agricultural sector should be taken into...
متن کاملVirtual manufacturing cells scheduling considering lotstreaming and sequence dependent setup times
In this paper, a new mathematical model for the problem of job scheduling in virtual manufacturing cells (VMC) is presented to minimizing the completion time of all jobs. Sequence dependent setup times of machines is considered and lot-streaming is possible. In Virtual manufacturing cells, each job has a different processing path and there is a set of machines for processing each operation. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Future Generation Comp. Syst.
دوره 55 شماره
صفحات -
تاریخ انتشار 2016